|
|
(5 intermediate revisions by one other user not shown) |
Line 4: |
Line 4: |
| ==DAESO-corpus== | | ==DAESO-corpus== |
|
| |
|
| Het DAESO Corpus is een parallelle monolinguale treebank van Nederlandse teksten. Het corpus bevat ruim 2,1 miljoen woorden parallelle en vergelijkbare tekst. Ongeveer 678.000 woorden werden handmatig gealigneerd en ongeveer 1,5 miljoen woorden werden automatisch gealigneerd. Er is een semantische relatie toegevoegd aan de gealigneerde woorden/zinnen. | | Het DAESO-corpus is een parallelle monolinguale treebank van Nederlandse teksten. Het corpus bevat ruim 2,1 miljoen woorden parallelle en vergelijkbare tekst. Ongeveer 678.000 woorden werden handmatig gealigneerd en ongeveer 1,5 miljoen woorden werden automatisch gealigneerd. Er is een semantische relatie toegevoegd aan de gealigneerde woorden/zinnen. |
|
| |
|
| * 92.5 MB | | * 92.5 MB |
Line 19: |
Line 19: |
| <span id="Simplification_Data"></span> | | <span id="Simplification_Data"></span> |
| ==[[Simplification_Data/nl|Simplificatiedata]]== | | ==[[Simplification_Data/nl|Simplificatiedata]]== |
|
| |
| '''Manueel gecreëerde datasets'''
| |
|
| |
| Het Nederlandse gemeentelijke corpus is een parallel monolinguaal corpus voor de evaluatie van zinsvereenvoudiging in het Nederlandse gemeentelijke domein. Het corpus is gemaakt door Amsterdam Intelligence. Het bevat 1.311 vertaalde parallelle zinsparen die automatisch gealigneerd werden. De zinsparen zijn afkomstig uit 50 documenten van de communicatieafdeling van de gemeente Amsterdam die handmatig werden vereenvoudigd om de vereenvoudiging voor het Nederlands te evalueren.
| |
|
| |
| * 265 KB
| |
| * [https://github.com/Amsterdam-AI-Team/dutch-municipal-text-simplification/tree/master/complex-simple-sentences Download dataset (CSV-bestand)]
| |
|
| |
| '''Automatisch gecreëerde datasets'''
| |
|
| |
| 1) De eerste dataset is door Bram Vanroy gemaakt voor Nederlandsetekstvereenvoudigingstaken met behulp van text-to-text transfer transformers en bestaat uit Nederlandse bronzinnen samen met hun corresponderende vereenvoudigde zinnen, gegenereerd met ChatGPT.
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| # Training = 1013 sentences (262 KB)
| |
| # Validation = 126 sentences (32.6 KB)
| |
| # Test = 128 sentences (33 KB)
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * [https://huggingface.co/datasets/BramVanroy/chatgpt-dutch-simplification Download page (CSV files)]
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| 2) The second dataset is created by UWV Nederland as part of the "Leesplank" project to ensure ethical and legal soundness. It comprises 2.87 million paragraphs and its simplified text as corresponding result. The paragraphs are based on the Dutch Wikipedia extract from [http://gigacorpus.nl/ Gigacorpus]. The text was filtered and cleaned by [https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/content-filter?tabs=warning%2Cpython-new using GPT-4 1106 preview].
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * 3.02 MB
| |
| * [https://huggingface.co/datasets/UWV/Leesplank_NL_wikipedia_simplifications Download page]
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| A more extended version of this dataset was made by Michiel Buisman and Bram Vanroy. This datasets contains a first, small set of variations of Wikipedia paragraphs in different styles (jargon, official, archaïsche_taal, technical, academic, and poetic).
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * 3.02 MB
| |
| * [https://huggingface.co/datasets/UWV/veringewikkelderingen Download page]
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| 3) The third dataset is the comparable corpus created by Nick Vanackere. It contains a comparable corpus of 12,687 Wablieft articles between 2012-2017 from 206,466 De Standaard articles from 2013-2017. To ensure comparability, only articles from 08/01/2013 till 16/11/2017 were considered, resulting in 8,744 Wablieft articles and 202,284 De Standaard articles. The difference in the number of articles is due to the publication frequency, with Wablieft being weekly and De Standaard daily.
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * 17.5 MB
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * [https://github.com/nivack/comparable_corpus_Wablieft_deStandaard/blob/main/comparable_corpus_Wablieft_DeStandaard.txt Download page]
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| '''Translated datasets'''
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| 1 The first translated dataset is created by Netherlands Forensic Institute using Meta's [https://ai.meta.com/research/no-language-left-behind/ No Language Left Behind model]. It comprises 167,000 aligned sentence pairs and serves as a Dutch translation of the SimpleWiki [https://cs.pomona.edu/~dkauchak/simplification/ dataset].
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * 8.67 MB
| |
| * [https://huggingface.co/datasets/NetherlandsForensicInstitute/simplewiki-translated-nl Download dataset]
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| 2 The second translated dataset is created by Theresa Seidl in the context of Controllable sentence simplification in Dutch. This is a synthetic dataset which is a combination of the first 10,000 rows of the parallel [https://github.com/XingxingZhang/dress WikiLarge dataset], and [https://github.com/facebookresearch ASSET (Abstractive Sentence Simplification Evaluation and Tuning) dataset]. By combining these two datasets, Theresa translated them to Dutch using [https://arxiv.org/pdf/1609.08144 Google Neural Machine Translation].
| |
| </div>
| |
|
| |
| <div lang="en" dir="ltr" class="mw-content-ltr">
| |
| * [https://github.com/tsei902/simplify_dutch/tree/main/resources/datasets Download page]
| |
| </div>
| |